Current Issues in Sampling-Based Motion Planning
نویسندگان
چکیده
In this paper, we discuss the field of sampling-based motion planning. In contrast to methods that construct boundary representations of configuration space obstacles, sampling-based methods use only information from a collision detector as they search the configuration space. The simplicity of this approach, along with increases in computation power and the development of efficient collision detection algorithms, has resulted in the introduction of a number of powerful motion planning algorithms, capable of solving challenging problems with many degrees of freedom. First, we trace how samplingbased motion planning has developed. We then discuss a variety of important issues for sampling-based motion planning, including uniform and regular sampling, topological issues, and search philosophies. Finally, we address important issues regarding the role of randomization in sampling-based motion planning.
منابع مشابه
Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization
Path planning is a method that determines a path, consecutive states, between a start state and goal state, LaValle (2006). However, in motion planning that path must be parameterized by time to create a trajectory. Consequently, not only is the path determined, but the time the vehicle moves along the path. To be successful at motion planning, a vehicle model must be incorporated into the traj...
متن کاملOptimal Path Planning using RRT* based Approaches: A Survey and Future Directions
Optimal path planning refers to find the collision free, shortest, and smooth route between start and goal positions. This task is essential in many robotic applications such as autonomous car, surveillance operations, agricultural robots, planetary and space exploration missions. Rapidly-exploring Random Tree Star (RRT*) is a renowned sampling based planning approach. It has gained immense pop...
متن کاملReal-time Sampling-based Motion Planning with Dynamic Obstacles
REAL-TIME SAMPLING-BASED MOTION PLANNING WITH DYNAMIC OBSTACLES by Kevin Rose University of New Hampshire, December, 2011 Autonomous robots are increasingly becoming incorporated in everyday human activities, and this trend does not show any signs of slowing down. One task that autonomous robots will need to reliably perform among humans and other dynamic objects is motion planning. That is, to...
متن کاملA Fast Optimal Sampling-based Motion Planning Algorithm based on the Poisson-Disk Sampling Distribution
Sampling-based motion planning algorithms have been proven to work well with difficult planning tasks in a variety of problems. Recently, asymptotic optimal algorithms have been proposed to overcome the non-optimality inefficiency of these planners but with extra computational costs associated with the additional processing requirements. In this paper, new extensions of optimal sampling-based m...
متن کاملSampling-based robot motion planning: Towards realistic applications
This paper presents some of the recent improvements in sampling-based robot motion planning. Emphasis is placed on work that brings motion-planning algorithms closer to applicability in real environments. Methods that approach increasingly difficult motion planning problems including kinodynamic motion planning and dynamic environments are discussed. The ultimate goal for such methods is to gen...
متن کامل